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ABSTRACT

This work focuses on the construction of equilibrated two-phase antiplane

shear deformations of a non-elliptic isotropic and incompressible hyperelastic ma-

terial. It is shown that this material can sustain metastable two-phase equilibria

which are neither piecewise homogeneous xior axisymmetric, but, rather, involve

non-planar interfaces which completely segregate inhomogeneously deformed ma-

terial in distinct elliptic phases. These results are obtained by studying a con-

strained boundary value problem involving an interface across which the deforma-

tion gradient jumps. The boundary value problem is recast as an integral equation

and conditions on the interface sufflc:;ent to guarantee the existence of a solution

to this equation are obtained. The contraints, which enforce the segregation of

material in the two elliptic phases, are then studied. Sufficient conditions for their

satisfaction axe also secured. These involve additional restrictions on the inter-

face across which the deformation gradient jumps-which, with all restrictions

satisfied, constitutes a phase boundary. An uncountably infinite number of such

phase boundaries are shown to exist. It is demonstrated that, for each of these,

there exists a solution-unique up to an additive constant-for the constrained

boundary value problem. As an illustration, approximate solutions which corre-

spond to a particular class of phase boundaries are then constructed. Finally, the

kinetics and stability of an arbitrary element within this class of phase boundaries

are analyzed in the context of a quasistatic motion.
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1. INTRODUCTION

Finite elastic equilibria with discontinuous deformation gradients have fig-

ured prominently in recent continuum mechanical treatments of displacive solid-

solid phase transformations. Models of this sort are pertinent to the investiga-

tion of shape memory, twinning and transformation toughening in solids. Shape

memory and transformation toughening occur in metallic and ceramic alloys,

respectively, while twinning can be found in both metallic and ceramic alloys.

Micrographs of multiphase equilibrium states in alloys, such as those presented

by ZACKAY, JUSTUSSON, & SCHMATZ [27] and PORTER & HEUER [21], often dis-

play configurations wherein the various phases are segregated by geometrically

complicated interfaces. One question which arises regarding the aformentioned

continuum mechanical idealizations of such materials is whether they are capable

of capturing the morphological complexity of such deformations. As a first step

toward answering this question, this work focuses, within the context of a par-

ticular class of hypothetical materials, on the construction of equilibria involving

coexistent phases segregated by surfaces which-although not as morphologically

complex as those displayed in [21,27]-are, at least, non-planar.

In a homogeneous, hyperelastic material discontinuous deformation gradients

occur only if the relevant elastic potential allows for a loss of ellipticity, at certain

values of the deformation gradient, in the associated displacement equations of

equilibrium.1 Materials characterized by elastic potentials which allow such a

loss of ellipticity are referred to as non-elliptic. Of particular importance in this

work are non-elliptic materials which have at least two disjoint elliptic phases.

Examples of such materials are provided by ERICKSEN [12] in the context of a

one-dimensional bar theory, and by ABEYARATNE [3] in his study involving a spe-

cial class of incompressible, isotropic materials. ABEYARATNE [3], BALL & JAMES

[10], GURTIN [16], and SILLING [25] have demonstrated that materials of this sort

support equilibrium states which display coexistent elliptic phases and, in addi-

1 For a discussion of this issue see, for instance, RosAKIs [24].
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tion, minimize the relevant energy functional. As a result of the latter property

these states are referred to as mechanically stable. The associated deformation

fields in all of the foregoing works are either piecewise homogeneous or axisym-

metric. In the case of equilibrated piecewise homogeneous deformations the as-

sociated phase boundaries must be planar. BALL & JAMES [10] and SILLING [25]

have shown, however, that energy-minimizing sequences of piecewise homogeneous

mechanically stable deformations may possess limits which are metastable as op-

posed to mechanically stable and, moreover, involve non-planar phase boundaries.

On the other hand, ABEYARATNE [2] and SILLING [25] have constructed, respec-

tively, asymptotic and numerical solutions to a boundary value problem involving

a mode III crack in a particular subclass of incompressible, isotropic non-elliptic

materials. Thest solutions are not mechanically stable and are neit- er piece-

wise homogeneous nor axisymmetric; furthermore, they include the non-elliptic

material phase and, in addition, transitions between the elliptic and non-elliptic

phases which do not involve jumps in the deformation gradient. These solutions

do, however, involve surfaces which separate the two elliptic phases present in the

deformation. The relevant interfaces are, moreover, non-planar. RoSAKIS [23] has

recently shown that a special class of anisotropic non-elliptic materials is capable

of sustaining equilibria in which a family of cusped lenticular inclusions of one

elliptic phase reside in a matrix of another elliptic phase. These states are, in

general, metastable.

As yet there are no results pertaining to the existence, in non-elliptic isotropic

hyperelastic materials, of multiphase equilibrium states which are free of the non-

elliptic phase and are neither piecewise homogeneous nor axisymmetric. The

primary objective of this investigation is to prove constructively that a class of

non-elliptic isotropic incompressible hyperelastic materials is capable of sustaining

deformations of this type. These deformations will typically be metastable-like

those associated with the limits of the aformentioned minimizing sequences of

piecewise homogeneous deformations and the states constructed by ROSAKIS [23].
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Although non-planar phase interfaces may, in reality, reflect anisotropic effects,

these results show that they can exist within the context of a model which does

not take anisotropy into consideration. Isotropic materials may, consequently, be

useful in preliminary studies of the kinetics and stabilty of interfaces between

phases. These issues are taken up briefly in the final section of this work and,

more thoroughly, by FRIED [13] in a linear stability analysis of states involving

planar phase interfaces for a class of non-elliptic isotropic materials.

Chapter 2 is devoted to preliminaries. After a brief overview of the notation

to be used, Section 2.1 introduces the kinematics and fundamental balance prin-

ciples which will be needed in the following. Section 2.2 explains the constitutive

restrictions which will be adhered to throughout this work. Section 2.3 begins by

introducing the concept of a quasistatic motion. It then discusses the notions of

mechanical dissipation and driving traction associated with surfaces across which

the deformation gradient jumps; these lead naturally to the consideration of a

kinetic relation and the associated kinetic response function. In the final section

of Chapter 2, the kinematics are specialized to those of antiplane shear.

Chaptcr 3 focuses upon the solution of a particular constrained boundary

value problem, in antiplane shear, involving the field equations and jump con-

di'ions put forth in Section 2.4. After formulating the problem in Section 3.1,

a representation for the solution of the boundary value problem is presented in

Section 3.2. This representation is indeterminate in that it involves the unknown

jump in the normal derivative of the displacement field over an interface across

which the deformation gradient is discontinuous. In Section 3.3 an integral equa-

tion is derived for the unknown jump in the normal derivative of displacement

in terms of a parameterization of the interface. Sufficient conditions for the ex-

istence of a unique solution of this integral equation are then obtained. These

constitute analytical restrictions on the interface geometry. It transpires that

there exist an uncountably infinite number of interfaces which comply with these

resrictions. It is then shown that for each of these interfaces there exists a solu
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tion, unique up to an additive constant, tc the boundary value problem stated

in Section 3.1. In Section 3.4 the constraints which enforce segregation of the

elliptic phases are analyzed. These impose further analytical restrictions on the

interface geometry. It is shown that, within the set of interfaces which allow a

solution to the boundary value problem, there exist an uncountably infinite num-

ber of interfaces which also satisfy these restrictions and, hence, allow a solution

to the constrained boundary value problem. Each of these solutions involves a

non-planar and non-axisymmetric phase interface which separates elliptic phases

subjected to inhomogeneous deformations. Section 3.5 illustrates the results of the

two preceeding sections in determining a particular class of non-planar surfaces

for which the constrained boundary value problem can be solved. Approxima-

tions for the strain and displacement fields corresponding to the solutions of the

appropriate family of constrained boundary value problems are then constructed.

The last chapter is concerned with the kinetics and stability of slowly propa-

gating phase boundaries. In Section 4.1 the distribution of driving traction along

a phase interface of the kind constructed in Section 3.5 is calculated. Section

4.2 is concerned with observations pertaining to the kinetics of such a suiface.

Ingredients crucial to this analysis are the kinetic relation and response function

introduced in Section 2.3. This section concludes with results that relate the

monotonicity of the kinetic response function for a particular material and the

kinetic stability of that material. These final results are consistent with those

obtained in [13].



2. PRELIMINARIES

2.1. Notation, kinematics ard balance principles. In the following 1

and 0' denote the sets of real and complex numbers. The intervals (0, oc) and

[0, co) are represented by JR+ and R+. The symbol ifa, with n equal to 2 or 3,

represents real n-dimensional space equiped with the standard Euclidean norm.

If U is a set, then its closure, interior and boundary are designated by U, U, and

OU, respectively. The complement of a set V with respect to U is written as

U \ V. Given a function 0 : U -+ W and a subset V of U, Ok(V) stands for the

image of V under the map 0.

Vectors and linear transformations from ff3 to i? 3 (referred to herein as

tensors) are distinguished from scalars with the aid of boldface type-lower and

upper case for vectors and tensors, respectively. The symbol £ refers to the set
+

of tensors, £+ denotes the set of all tensors with positive determinant, and S

stands for the collection of all symmetric positive definite tensors. The set of unit

vectors in Rn 3 is designated by A. If F is in £ then FT represents its transpose;

if, moreover, det F $6 0, then the inverse of F and its transpose are written as

'- a : , r -T, 1especLPely. Wiiea component 6cA ation is used, Greek indices

range only over {1, 2}; summation of repeated indices over the appropriate range

is implicit.

Let q lie in [1, oo). Then, a function ?k : -+ Rn is an element of Lq(in) if it

is q integrable on in?-that is, if its L q norm over in?,

+00If4'IIL,(i ) = (J f
-00O

is defined. Similarly, 0 is an element of L0°(iR) if 4 is bounded on _n-that is, if

its L' norm over in,
II4'ILoo() = sup I'~I

exists. A function p :in2 __ B? is an element of Lq(in 2 ) or L'(in 2 ), respectively,

if the analogous Lq or L' norm over i 2 exists.
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Consider, now, a body B which, in a reference configuration, occupies a region

1Z contained in 1 3. Let the invertible mapping 1 :Z --4 T., with

9(x) = x + u(x) Vx EZ,(2.1.1)

characterize a deformation of B from the reference configuration onto a conifig-

uration that occupies the region R., in f' 3 . Assume that the deformation ', or

equivalently the displacement u, is continuous and possesses piecewise continuous

first and second gradients on RZ. Let S be the set of points contained in 1? defined

so that $ is differentiable on the set 1Z \ S. Introduce the deformation gradient

tensor F :R \ S -+ C+ by

f(x) = VS"(x) Vx E 1Z \ S, (2.1.2)

and assume that the associated Jacobian determinant, J : 7Z \ S --+ I?, of 5 is

strictly positive on its domain of definition:

J(x) = det F(x) > 0 Vx E R \ S. (2.1.3)

+

The left Cauchy-Green tensor G : 1? \ S ---* S corresponding to the deformation

$" is given by

G(x) = F(x)Fr(x) Vx E 1Z \ S. (2.1.4)

The deformation invariants associated with $, exist on 1Z \ S and are supplied

through the fundamental scalar invariants of G:

11(G) = t rG, 12 (G) = ((trG)2 - tr(G 2 )) 13 (G) = detG. (2.1.5)

With the above kinematic antecedents in place introduce the nominal mass

density p : R --* R+, the nominal body force per unit mass b : 1Z - t 3, and the
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nominal stress tensor S : R \ S --+ C, and suppose that p and b are continuous

on 1?, while S is continuous on R \ S, piecewise continuous on R, and also has a

piecewise continuous gradient on R. In the absence of constitutive assumptions

relating the stress to the deformation gradient, the sets over which S and F suffer

jumps need not be equivalent. The scope of this investigation is limited, however,

to elastic materials wherein stress is continuously related to strain--hence. S, like

F, is continuous on R\S. Let p. be the mass density in the deformed configuration

associated with $'. Given a regular subregion P of 1Z, let ni OP -+ A, denote

the unit outward normal to OP. Then the global balance laws of mass. and-in

the absence of inertia-force and moment equilibrium require that

JpdV p. dV, (2.1.6)

J SmdA + J pbdV = 0, (2.1.7)
0p 7'

and

J A SdA + A pbdV =0, (2.1.8)

respectively, for every regular subregion P contained in RZ.

Localization of the balance laws (2.1.6)-(2.1.8) at an arbitrary point con-

tained in the interior of 1Z \ S yields the following familiar field equations:

p=p.(5)J on 1Z\S,

V-S+pb=0 on 1Z\S, (2.1.9)

SFT=FST on =FS,

Suppose, from now on, that the set S is a regular surface. Then, localization

of (2.1.6)-(2.1.8) at an arbitrary point in S yields the following jump conditions:

[p.(S')JJ = 0 on S,
(2.1.10)

[Sn]=0 on S,
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where, given a generic field quantity g : 7 \ S --* B w-ich jumps across S, Eg] is

defined through

[g(x)] =lim (g(x + hn(x)) - g(x - hn(x))) Vx E S, (2.1.11)
h',0

with n : S -+ A' a unit normal to S. Observe from the jump condition (2.1.10),

that the mass denity in the deformed state p. is only defined on '(1? \ S). Equa-

tions (2.1.9), and (2.1.10), are, evidently, completely decoupled from equations

(2.1.9)2,3 and (2.1.10)2; that is, given a solution to, say, a boundary value prob-

lem involving the latter set of equations, p. can be calculated a posteriori. For

this reason equations (2.1.9), and (2.1.10), will be disregarded in the subsequent

analysis. In addition to the jump conditions given in (2.1.10), the stipulated

continuity of 5 gives

[u = 0 on S. (2.1.12)

2.2. Constitutive assumptions. Let B be composed of a hyperelastic ma-

terial which is homogeneous, isotropic and incompressible. Since B is hyperelastic

its mechanical response is governed by an elastic potential or strain energy per

unit reference volume. The homogeneity of B implies that the elastic potential

does not depend explicitly on position in the reference configuration. Further-

more, because B is isotropic the elastic potential can depend on the deformation

gradient F only through the deformation invariants Ik(G) defined in (2.1.7). The

incompressibility of 8 requires that the deformation 5 be isochoric, i.e.,

13 (G(x)) = J2 (x) = 1 Vx E 1Z \ S. (2.2.1)

An additional consequence of isotropy is, therefore, that the elastic potential can

be expressed as a function solely of the first two deformation invariants. It can

also be demonstrated via (2.1.5) that, when (2.1.1) holds, IQ(G(x)) > 3 for all

x contained in 1? \ S. Now, let iV [3, oc) x [3, oc) -- B? denote an elastic
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potential which characterizes B and assume that W is continuously differentiable

with piecewise continuous second derivatives on its domain of definition. The

nominal stress response of B is then determined through W7 up to an arbitrary

pressure p : T7 \ S -+ ff? required to accomodate the kinematic constraint (2.2.1)

imposed by the incompressibility of B: viz.,

S =2 (fVW(I)F + V 2(I)(1,(G)1 - G)G) -pF - T on 1? \ S, (2.2.2)

where I: JZ \ S - [3, o) x [3, co) is given by

I(x) = (I, (G(x)), 12 (G(x))) Vx E 1? \ S.

Following GURTIN [161, let the class of generalized neo-Hookean materials re-

fer to that subset of hyperelastic materials, first introduced by KNOWLES [19],

which are homogeneous, isotropic and incompressible with elastic potential in-

dependent of the second deformation invariant (2.1.5)2. Assume, henceforth,

that B is composed of a generalized neo-Hookean material with elastic potential

W : [3, c ) - R, where W is continuously differentiable with piecewise contin-

uous derivative on [3, oo). Then, by (2.2.2), the nominal stress response of B is

determined by

S = 2W'(II(G))F- pF-T on '7 \ S. (2.2.3)

Suppose also that the elastic potential is normalized so that

W(3) = 0. (2.2.4)

Choose a rectangular Cartesian frame X = {0; el, e2, e3 } and consider the

response of the material at hand to a simple shear deformation given by

(x) = x + y(x" e2)el Vx E 1?, (2.2.5)
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where the constant -- assumed non-negative without loss of generality-denotes

the amount of shear. From (2.1.2), (2.2.3) and (2.2.5) the nominal shear stress

corresponding to the deformation , is, for each -y in F+, found to be

el - Se 2 = 2-yW'(3 + -y2) =: r(Y). (2.2.6)

In [19-20] KNOWLES demonstrates that the components of nominal and

Cauchy shear stress are, in the present setting, equal. The function r : if?+ -- R

is, hence, referred to as the shear stress response function of the generalized

neo-Hookean material, characterized by W, in simple shear. An immediate con-

sequence of (2.2.4) and (2.2.6) is

VrT/ -3

W(I) = J r()dy VII E [3,oo), (2.2.7)

0

so that the response of a generalized neo-Hookean material, in all three dimen-

sional deformations, is, up to a hydrostatic pressure, completely characterized

by specifying the shear stress response function r. Define the secant modulus in

shear M: R+ --+ R of a generalized neo-Hookean material with elastic potential

W by

M(y) = 2W'(3 + _f2) Vy E F1+, (2.2.8)

and assume that, in compliance with the Baker-Ericksen inequality,

M(y) > 0 V7y E BR+. (2.2.9)

Assume, also, that M(0) > 0 so that the infinitesimal shear modulus of the

material at hand is positive. Note from (2.2.6) and (2.2.8) that the shear stress

response function r must also satisfy

r(0) = 0, r'(0) = M(0). (2.2.10)
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Observe, also, that the stipulated smoothness of W guarantees that both r and

M are piecewise continuously differentiable on R+.

It is worth remarking that, despite the significant restrictions which have been

placed upon the class of materials which will be considered in this investigation,

no presuppositions have been made regarding the sign of the derivative-where it

exists-of the shear stress response function corresponding to the generalized neo-

Hookean material through (2.2.6). In [20] KNOWLES shows that the monotonicity

of the shear stress response function r is related directly to the ellipticity of the

generalized neo-Hookean material which it characterizes: if r is not a monotone

increasing function on its domain of definition then the associated material is non-

elliptic. This investigation will make use of a particular subclass of non-elliptic

generalized neo-Hookean materials, first suggested by ABEYARATNE [3]; this class

of materials is characterized by the set of shear stress response functions r which

are continuous on R+ and piecewise continuously differentiable on JR+ \ {I, 1,
where 0 < y < -, such that

r' > 0 on R+\ [-y, ], r' <0 on (-y,-). (2.2.11)

The sets of shear strains lying in the intervals [0, -) and (-, o) are referred to as
*

the high and low strain phases of the generalized neo-Hookean material specified

by the shear stress response function r. Together the high and low strain phases of

such a material comprise its elliptic phases. A generalized neo-Hookean material

characterized by a shear stress response function of this type will be referred

to herein as a three-phase material. See Figure 1 for a graph of a shear stress

response function typical of those which specify three-phase materials. Within

the class of three-phase materials special attention will be given those materials

(proposed by ABEYARATNE in [2]) for which

p/1y if -yE [0,f],

Tp (-) = d(7-) if -y E [h,-y1, (2.2.12)

P27 if -E [ ,),
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where the function d R[, ] - I is linear in its argument. Observe that, in

accordance with (2.2.11)2, d is required to decrease on (-,- ). A further conse-

quence of (2.2.11) is that M, must be greater than P2 which must itself be positive.

Figure 2 shows the graph of rp.

2.3. Dissipation, driving traction and the kinetic relation. For the

purposes of this section it is necessary to consider a one parameter family of

deformations r(., t) : 1? -* R where t, which denotes time, increases from to to

t1 . It is assumed that $(x, .) is continuous with piecewise continuous first and

second derivatives for each fixed x in ?. Let St be a regular surface, with unit

normal n(-,t) : St --- N, contained in lt for each value of t in [to,t1 ]. The fields

u(.,t) : 1 R _+ 3, F(.,t) : 1 \ St -+ £+, b(.,t) : 7Z --_ R 3 , and S(.,t) : \ St -+ £

are, at each t contained in [to, ti ], the obvious counterparts of those introduced in

Section 2.1. A one parameter family of deformations of this sort is referred to as

a quasistatic motion if the above quantities and the nominal mass density satisfy

the field equations

V. S(.,t) + pb(.,t) = 0 on R \ St Vte [to,ti],
(2.3.1)

S(., t)FT(., t) = F(., t)S(., t) on 7? \ St Vt E [to, ti],

the jump condition

[S(., t)n(., t)J =0 on St Vt E [to, t], (2.3.3)

and the kinematic condition of displacement continuity

[u(-,t)] = 0 on St Vt E [to,tl]. (2.3.4)

KNOWLES [18] has shown that, in a quasistatic motion, the presence of a

moving surface of discontinuity St of the type considered here has an effect on

the balance of mechanical energy. Let P be a regular subregion contained in 1R.
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In [18] it is demonstrated that the difference in the rate of work of the mechanical

forces external to P and the rate at which energy is stored in P is given by

b,(t; P') = f f(x, t)Vn(x, t) dA Vt E [to, t1], (2.3.5)
S, nrP

where, for each t in [to,t 1 ], f(.,t) : St --+ B? is the scalar driving traction and

V,(., t) : St --+ R is the normal velocity of the interface (in the reference configu-

ration). The function 6(-; 1P) : [to, ti] -+ BR is referred to as the rate of dissipation

of mechanical energy associated with the region P. It has been shown by YATOMI

& NISHIMURA [26] as well as ABEYARATNE & KNOWLES [7] that the form of the

driving traction for a hyperelastic material is, in the quasistatic setting, supplied

by

f(., t) = [W(F(., t))] - S(., t) -F(-, t)J on St Vt E [to, t], (2.3.6)
+

where S(.,t) (resp., S(.,t)) is the limiting value of the field S(.,t) on the side of

the interface into which the unit normal n(-, t) is (resp., is not) directed at t in

[to, ti].

When treated from a thermomechanical perspective, the dissipation rate can

be shown to be identical to the product of the temperature and the rate of entropy

production-provided that the temperature is spatially uniform and independent

of time.2 The Clausius-Duhem inequality then requires that the dissipation rate

associated with a quasistatic motion of the kind envisioned here be non-negative,

that is

b,(t; P ) > 0 Vt E [to, t], (2.3.7)

for every regular subregion P contained in 1?. A localization of (2.3.5) at an

arbitrary point on the interface therefore yields the inequality

f(.,t)Vn(.,t)> 0 on St Vt E [to,ti] (2.3.8)

2 For a detailed discussion of the these issues see ABEYARATNE & KNOWLES [7].
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as a condition imposed for the admissibility of the quasistatic motion.

In the context of a motion which involves such an interface it is necessary (see

[1] and [3-8]) to supplement, in some fashion, the constitutive information which

relates the stress and strain fields. An approach to this pioneered by ABEYARATNE

& KNOWLES [7] entails the provision of a kinetic relation which gives the normal

velocity of the interface in terms of the driving traction which acts thereon or vice

versa. In the former case one specifies a function V"R --+ R such that

Vn = V(f) Vf E JR. (2.3.9)

Here V is referred to as the kinetic response function. If the function V is such

that f(f)f > 0 on R then (2.3.8) is automatically satisfied and the kinetic re-

sponse function is itself referred to as admissible. If an admissible kinetic response

function is continuous on R, then it must satisfy V(0) = 0. If, in addition to be-

ing admissible, f/ is continuously differentiable on R, then V'(0) > 0. Otherwise

admissibility implies nothing with regard to the sign of the derivative of a smooth

kinetic response function '. All kinetic response functions considered herein are

assumed to be admissible.

In the work of ABEYARATNE [3], BALL & JAMES [10], GURTIN [16], GURTIN &

TEMAM [15], and SILLING [25] the necessary additional constitutive information is

provided by setting the driving traction equal to zero on St for all t in [to, ti]. This

amounts to prescribing a particular rate independent kinetic relation whereby

energy is conserved; it is, furthermore, a necessary consequence of requiring that

a suitable energy functional be minimized at each t in [to, ti] (see ABEYARATNE

[1]).

2.4. Antiplane shear of a generalized neo-Hookean material. Sup-

pose, from now on, that 1Z is a cylindrical region and choose a rectangular Carte-

sian frame X = {0; e l , e2 , e3 } so that the unit base vector e 3 is parallel to the

generatrix of R?. The deformation k defined through (2.1.1) consists of an an-
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tiplane shear if it is of the form

k(x) = x + u(xi, x 2 )e 3 Vx E 7?., (2.4.1)

That is, the displacement field intrinsic to an antiplane shear deformation has

only one nonzero component in the e3 direction which is independent of the X3-

coordinate. In (2.4.1) x. = x- e,, for each x contained in 1R. The function u will

be referred to as the out-of-plane displacement field. Inspection of (2.4.1) reveals

that any discontinuities in the gradient of S must be due to discontinuities in the

out-of-plane displacement field and, hence, occur across surfaces which do not

vary with the x3-coordinate.

KNOWLES [19] has demonstrated that, although not every hyperelastic,

isotropic and incompressible material can sustain antiplane shear deformations,

all generalized neo-Hookean materials are capable of doing so. It has been shown

(KNOWLES [19-20]) that for such materials the local balance equations (2.1.9)2,3

reduce, in the absense of body forces and under the asssumption that the nominal

stress tensor is independent of the x3 -coordinate, to the scalar equation

(M(y)u,,o ),, = 0 on 'D \ C. (2.4.2)

Here M is the secant modulus in shear as defined in (2.2.8), E ) \ C -- 1R is the

shear strain field given by

'Y(x,,x 2 ) = Vu,(X1,X2)u,,,(Xl,X2) V(x,,x 2) E V \C, (2.4.3)

V is a plane region with shape determined by a generic cross section of R?, and

C is a curve contained in E) and determined similarly by a cross section of the

surface across which the deformation gradient jumps. Furthermore, the jump

condition (2.1.10)2 reduces, for a generalized neo-Hookean material subjected to

antiplane shear, to

IM(y)uQ nd = 0 on C, (2.4.4)



-16-

where n: C -- A/ is a unit normal to C, while (2.1.15) becomes

uj= 0 on C. (2.4.5)

It is also readily shown that the driving traction f, introduced in Section 2.3,

for a generalized neo-Hookean material subjected to an antiplane shear deforma-

tion involving a discontinuity in the gradient of displacement across a curve C is

given by

[W(3 + y2)J _ M("),a ILUa I on C. (2.4.6)

In (2.4.6) u, and U,Q refer to the limiting values of the gradient of the out-of-

plarc displacement field on the side of the curve C into -,.'hicli and out of which

the unit normal n points, respectively. Evidently, + and -y are given in terms of
+u, , and u,a, by (2.4.3).
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3. STUDY OF A CONSTRAINED BOUNDARY VALUE PROBLEM

IN THE ANTIPLANE SHEAR OF A THREE-PHASE MATERIAL

This chapter focuses, in the context of antiplane shear, on the construction of

two-phase equilibria of a body composed of the particular non-elliptic generalized

neo-Hookean material with shear stress response function rp defined via (2.2.12).

These equilibria will involve non-planar interfaces which segregate material in

different elliptic phases. The interfaces will be described by surfaces Q, of the

form

Q,= {x EBI xi = S(X2), X2 E Af? X3 E 1R}J

where s is twice continuously differentiable on R, s(n ) is in L-(JR) n L 2(i?) for

r =0,1,2, and

lir s(x 2 ) = 0.
X 2 - 00

In Section 3.1 a boundary value problem for the out-of-plane displacement field

associated with two-phase antiplane shear deformations of a three-phase material

is formulated and specialized to the case of the material with shear stress response

-rp. This boundary value problem is supplemented by a set of constraints which

require that the non-elliptic phase of the relevant material is absent and, moreover,

that the elliptic phases are segregated. In Section 3.2 the boundary value problem

is converted into an integral equation for the jump in the normal derivative of

the out-of-plane displacement field across Q.. In Section 3.3 it is shown that

there exists a unique solution to this integral equation for every Q. defined by a

function s which, in addition to the restrictions delineated above, satisfies

+00
2 < /3, 1 + P~2

(J1S'(X2)S"(X 2 )i dX2 ) V' -2 Pl - P2

-00

where p, and P2 are the moduli associated with the elliptic phases of the material

defined by rp. It is then demonstrated that for each such s there exists a unique

(up to an arbitrary additive constant) solution to the boundary value problem
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stated in Section 3.1. Since, however, the constraints mentioned above are not

necessarily satisfied by any of these solutions, the deformation associated with

a given solution does not necessarily constitute a two-phase equilibrium state of

the type sought after here. In Section 3.4 it is shown that, provided a certain

functional of s is sufficiently small-in a sense to be made precise-then there

exists a unique solution to the constrained boundary value problem and, hence, a

two-phase equilibrium state of the type sought after here. The concluding section

of this chapter is concerned with the construction of a class of two-phase states

which involve non-planar interfaces separating material in distinct elliptic phases.

3.1. Formulation and reduction of the boundary value problem

and phase segregation requirements. Suppose that B is composed of a

three-phase material and that the cylinder 1? degenerates to occupy all of JR?3.

Let the rectangular Cartesian frame X be as in Section 2.4. Consider the effect

of subjecting 1Z to a particular antiplane loading whereby, independent of the

x2-coordinate, the shear strain approaches uniform values of -y as x, tends to

-co and -y, as x, tends to +00. Assume that Yf is greater than -i and that

-r lies strictly between 0 and -(; the prescribed remote shear strains associated

with the loading are, thus, in the high and low strain phases of the material at

hand as x, approaches -oo and +00, respectively. If "yl and -r are chosen so

that the corresponding remote shear stresses r(yi) and 7(7,.) are equal then-for

every three-phase material-there exists, modulo an arbitrary additive constant, a

unique one parameter family of pairwise homogeneous out-of-plane displacement

fields ua: R --+ R which satisfy the equilibrium equation in (2.4.2) on JR2 \ Ca,

with the straight line C. given by {xae, E lR2 lx, = a, x 2 E JR}, the jump

conditions in (2.4.4) and (2.4.5) on Ca and, of course, the decay requirements

associated with the prescribed conditions at x, = ±oo. The function ua is given

by

y l-(x- a) if x, < a,a(1)-- yr(Xl -a) if X, > a. (3.1.1)
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Here a determines the point of intersection of the plane surface Q,, given by

C. x R, with the x -axis. Note that, for each fixed a, the pairwise homogeneous

deformation associated with (3.1.1) through (2.4.1) involves exclusively the elliptic

phases of the material under consideration and that these are segregated by Q,,;

the deformation associated with (3.1.1) will be referred to as a globally elliptic

pairwise homogeneous equilibrium state. The interface Qa associated with such a

state will, in turn, be referred to as a phase boundary. Observe that the qualitative

character of the equilibrium state associated with u, is clearly unaffected by the

value of a.

Envision a generalization of the globally elliptic pairwise homogeneous equi-

librium state wherein the kinematics remain those of antiplane shear and the

loading conditions are as described at the outset of this section but the planar

phase boundary is replaced by a non-planar interface Q. with cross section C.

where, for simplicity,

Q, = C* x i (3.1.2)

with

Cs = {xaea E in 2lxI = s(X2),X2 E in}. (3.1.3)

Assume that the state is equilibrated in the sense that the balance equation in

(2.4.2) holds on in 2 \ C, while the jump conditions in (2.4.4) and (2.4.5) are

satisfied on C,. Clearly, if such a state exists, the deformation field intrinsic to it

must be inhomogeneous on either side of the interface Q,. Observe that even if a

three-phase material is capable of sustaining a deformation of this kind the shear

strain field may not, in general, be distributed so that only the elliptic phases of

the material are present; if, however, this is the case and, furthermore, the high

and low strain phases of the relevant material are segregated by the interface Q,

then the deformation will be said to constitute a globally elliptic inhomogeneous

two-phase equilibrium state with phase boundary Q,.

Consider, now, the geometry of the curve C, which determines the phase

boundary Q, essential to a globally elliptic inhomogeneous two-phase equilibrium
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state. Since the shear strain field is constant as xi approaches ±00, it is clear

that s must be bounded on R in order for C, to qualify as a cross section of the

phase boundary Q,. The kinematics and boundary conditions place no further

restrictions on the geometry of C,.

Observe that if, in addition to being bounded and continuous on R, s satisfies

one or both of

hm S(X2 ) = C, lrn S(X2 ) = c, (3.1.4)
wher 00 and +0

where c and c axe real constants, then the loading must be restricted so that the

far field shear stresses r(-y) and 7(y,) are equal. To see this suppose that (3.1.4),

holds. Then, as x2 approaches -oo the phase boundary becomes planar and the

local character of the deformation begins to resemble a pairwise homogeneous

state. Since the far field shear strains -yl and f, are constant the local shear

strains must match these appropriately on either side of C. as xi approaches -oo.

Hence, the local shear stresses must match their far field counterparts T(71) and

7T(/r) and, by the jump condition in (2.4.4) which holds on C., r(-1) = T(Yt).

A completely analogous argument can be constructed if (3.1.4)2 holds instead of

(3.1.4)1. Certainly, if both of (3.1.4) hold, the result is still true. Note, however,

that if neither of (3.1.4) hold, and, hence, the curve C. is merely bounded, there is

no reason to rule out-a priori-loading conditions wherein the far field stresses

are unequal.

Assume, henceforth, that (3.1.4) holds with c and c equal to, say, c. Recalling

the role of a in (3.1.1), there is certainly no additional loss in generality incurred

by taking c = 0. In this case (3.1.4) becomes

liM S(X2) = 0. (3.1.5)
z2 ±00

Let U be the set of functions defined by

U= { I?---*JRI1EC(R), lim O(x2)=0,0 0onff?}.
X2 -00
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Assume, henceforth, that s is an element of the set

A = U n V n W, (3.1.6)

where V and W are defined by

V = { f : JR Ii B E C2 (R), 0(") E L 2 (IB),n = 0, 1,2}, (3.1.7)

and

W = { R :R - J I ,V, E C 2 (R), V(n) E L-(B), n 0, 1, 2}, (3.1.8)

respectively.

Given an element s of A which describes an interface Q, it is convenient to

define plane sets D19 and D, by

V. = {xce, E I JlxI _ s(X 2 ),X2 E J }, E:). = R' \f't. (3.1.9)

Clearly, the union and intersection of D.V and D,' form generic cross-sections

of the cylinder 1Z and the phase boundary Q, respectively. Note, also, that

if s is an element of A then, by (3.1.3) and its assumed smoothness, a unit

normal to Q, exists everywhere on Q, and depends only on the x2-coordinate.

Let n : JR -+ ." designate the unit normal to Q, which points into the region of
0

low strain-Dl x B?. Then the representation for n is computed easily from the

definitions of Q. and C. and is given by

e1 - s'(x2)e2,

I2;= - s'(X2) 2  , V2 E JR. (3.1.10)

Now, if a three-phase material is capable of sustaining a globally elliptic

inhomogeneous two-phase equilibrium stste of antiplane shear with phase bound-

ary Q. then the out-of-plane displacement field u associated with the deformation
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through (2.4.1) must, by virtue of (2.4.2), (2.4.4) and (2.4.5), satisfy the following

field equation and jump conditions:

),= 0 on 2 \ C.

[M(-y)u,,nal= on C8, (3.1.11)

u=O0 on Ca,

with n as indicated in (3.1.10); in order to comply with the prescribed loading it

suffices to require that the gradient of u satisfies the following asymptotic decay

conditions:

{7yiei+o(1) as -- c,
u,a (xi, .)ea 7tel+o(1) as x1- oc), on B?; (3.1.12)

L yrei +o(l) as xi-*+oo,

moreover, in order to assure that only the elliptic phases of the material at hand

are present and are segregated by Q., the shear strain field 7, given in terms of

the gradient of u by (2.4.3), must conform to the following inequalities:

(j, 00,) on , E [0,'Y) on , (3.1.13)

where DI and Dr are given by (3.1.9). These inequalities will be referred to as

the phase segregation requirement.

Given a three-phase material, (3.1.11)-(3.1.12) comprise, for each fixed s

contained in A, a boundary value problem in the out-of-plane displacement field

u, while (3.1.13) acts as a systcn of constraints thereon. Together (3.1.11)-

(3.1.13) will be referred to as the constrained boundary value problem in u for

the three-phase material with secant modulus in shear M. Given a particular

three-phase material the constrained boundary value problem need not have a

solution for any function s in A. The study of (3.1.11)-(3.1.13) for a specific

material may, however, serve as a means to determine a subset of A for which

the constrained boundary value problem is soluble.
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Before proceeding note that the jump conditions (3.1.11)2,3 holding across

C. can be recast to read

M (-Y (s(.)+,.)) (s(.)+,.) = M ((s(.)-, .))a (S(.)-,.) on .ZR,
n (31.14)

u (s(.)+,.) = u (s(.)-,.) on R,

where the + and - symbols indicate the limiting values of the appropriate quan-

tities on the high and low strain sides of the interface, respectively.

For simplicity attention will, for the remainder of this work, be restricted

to the constrained boundary value problem for the material characterized by the

shear stress response function rp defined in (2.2.12). In this case the form of

the shear stress response function is such that the secant modulus in shear M

is constant in both the high and low strain elliptic phases; hence, (3.1.11)1 and

(3.1.14), reduce to

= on
Ou Ott(3.1.15)

S ((+, )= A2 (s(.)-,) on

The analytical difficulties of the special constrained boundary value problem posed

by (3.1.15), (3.1.14)2, (3.1.12) and (3.1.13) are certainly less daunting than those

encountered in the analogous problem for a more general three-phase material.

For each fixed s in A the only non-linearity which encumbers the problem asso-

ciated with rp is that imposed by the strain constraints (3.1.13). In the present

absence of results pertaining to the existence of globally elliptic two-phase equi-

libria in arbitrary three-phase materials, any results which can be obtained for

this particular material constitute progress toward a qualitative understanding of

the more general issue.

As a first step in analyzing the constrained boundary value problem com-

prised by (3.1.15), (3.1.14)2, (3.1.12) and (3.1.13) it is convenient to introduce a

reduced out-of-plane displacement field v : R 2 \ C. -+ JR specified via

v(X 1,X 2 ) = u(xI,x 2 ) - uo(xI,x 2 ) V(x 1,x 2 ) E JR 2 \ C, (3.1.16)
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where uo : R 2 \ C, -- JR is furnished by

Uo(X,x 2 )=H(s(x2 )-xl)YIxI +H(xi -s(X2))-YX1 V(xI,X 2)E R 2 \C,

and H : R \ {0} --+ 1? is the Heavyside function:

= 0 if zX <0,
(1 if X, > 0.

Solving for u in (3.1.16) and inserting the result in (3.1.15), (3.1.14)2 and

(3.1.12) shows, with the aid of the definitions of u0 and H, that the reduced out-

of-plane displacement field v must satisfy the following boundary value problem:

vo= 0 on R2 \C,

P8 (S(-)+, = 42 5 on R,
(3.1.17)

V(s(.)+, - v(s(.)-,.) = (1- -Yr)s on R,

v,a(xI,.)e,=o(1) as x,---*±oo on JR.

Note that in deriving (3.1.17)2 use has been made of the equality of remote shear

stresses-which, as shown at the beginning of this section, is a necessary conse-

quence of (3.1.5). The phase segregation requirement (3.1.13) can be written-

after appropriate substitution for u-in terms of the components of the gradient

of v as follows:

2 < V,V,+a "t(2v,l "+71) on E,

2 (3.1.18)
0 < v,c v,c +Y(2v,i +tr) < - 2  on

The boundary value problem in (3.1.17) will be referred to as the reduced

boundary value problem with the implicit understanding that it is in the reduced

out-of-plane displacement field v and for the special three-phase material with

shear stress response function rp. The system of inequalities in (3.1.18) will be
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labelled the reduced phase segregation requirement. It is clear from the simple

relation between the primitive out-of-plane displacement field u and its reduced

counterpart v that any solution to the reduced problem yields a solution to the

original problem. The next section will focus on obtaining a representation for

the solution to the reduced boundary value problem with the reduced phase segre-

gation requirement held in abeyance. This representation will lead to an integral

equation which, for each fixed s in A, may be analyzed in place of the associated

reduced boundary value problem.

3.2. Reformulation of the reduced boundary value problem as an

integral equation. Let s be an arbitrary element of A. Since, by (3.1.17)1,

the reduced out-of-plane displacement field v is harmonic on JR2 \ C, the jump

conditions (3.1.17)2 and (3.1.17)3 suggest that v can be represented, modulo an

arbitrary additive constant, as the sum of a single- and a double-layer potential

along the curve C,. 3 The densities of the appropriate single- and double-layer

potentials are given, respectively, in terms of the jumps in the normal derivative

of v and of v itself across the curve C.. From the jump condition (3.1.17)3 it is

clear that the density of the double-layer potential must be given by (Y1 - Yr)s on

JR. Since, by the definition of the shear stress response function rp, the moduli p1

and p2 which appear in (3.1.17)2 are required to be unequal, this jump condition

does not yield direct information regarding the form of the density of the single-

layer potential. It is, therefore, necessary to designate the jump in the normal

derivative of v across C, in terms of an unknown function-say (71 - 7r)0, where

it is assumed, until demonstrated otherwise, that : JR -- I does not vanish

identically on JR. Hence, the proposed representation for the reduced out-of-plane

displacement field v takes the form

v(XX2)= - ''r (S(xI X2)+D.(xl,x 2 )) V(x 1,X2 ) EffJ2 \c, (3.2.1)

27r

where the functions So : JR2 --+ R and D. : R2 \ C --* R issue, respectively,

3 For an overview of the relevant potential theory see COURANT & HILBERT [11].
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from the single- and double-layer potentials on C, with densities $ and s and are

given by

+0o

SO(xI,x2) = JG (xl,x 2 ,)0( )V/1+ s'() 2 d V(xI,x 2 ) E ff 2, (3.2.2)

-00

and
+00

D,(x,,X2 ) = fJG(x,x 2 , )s( )d V(Xl,X 2 ) E ff 2 \ C'. (3.2.3)

-00

The kernels G' : (JR 2 \ C8) X J -B J and G2 : R 2 X R __ JR? which appear in

(3.2.2) and (3.2.3) are given, for each contained in JR, by

G (xl,x 2 , ) = In ,I(x1 - s( )) 2 + (x 2 - C)2 V(x1,x 2) E JR2 \C., (3.2.4)

and

X = (X - S( )) - (X2 - )S'(2) V(Xl, X 2 ) E R2. (3.2.5)

Consider, now, the issue of verifying the status of the representation (3.2.1) as

a solution to the boundary value problem (3.1.17). Since the single- and double-

layer potentials are harmonic, by construction, on R 2 \ C., it is evident that the

function v given by (3.2.1)-(3.2.5) satisfies (3.1.17)1. A series of direct calcu-

lations too long to display here show that v, 1 (xI, .) and V,2 (xi, .) both behave

asymptotically like O(1/xl) as x, approaches ±c on JR so that the represen-

tation (3.2.1)-(3.2.5) complies with (3.1.17)4 and, hence, the loading conditions.

Since the single-layer term (3.2.2) is continuous on R 2 and the double-layer term

(3.2.3) has been constructed so that is possesses a jump of 27rs across the curve

C, it is also clear that (3.2.1)-(3.2.5) furnishes a representation of v which sat-

isfies the jump condition in (3.1.17)3. The only remaining requirement which

must be satisfied by (3.2.1)-(3.2.5) in order for it to provide a solution to the
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reduced boundary value problem is the jump condition (3.1.17)2 involving the

normal derivative of v. A straightforward but tedious calculation using standard

results from potential theory delivers the limits of the normal derivative of v on

either side of C, in the form

+00
19V _SX2± X2)1~r I.(X2, )s'( ) dn(s(x) + X) = 27rV + SX ') 2

-00

+00

+ 2gr 1 X)2JK.(X2, 7 )O(q)iV/l + '()2 d
-00

A: _O"(X 2 ) VX2 E Rn, (3.2.6)
2

where, for each fixed X2 in , I,(X2,) Rn \ {X2} -+ Rn and K8 (x 2 ,.) R -+ R

are given, repectively, by

I,(X 2 , ) - (s(X2) - s())S'(x2) + (x2 -C)
(s(X2) - s(C))2 + (X2 - C)2 V e JR \ {X2}, (3.2.7)

and
K,(X, C= (S(x2) - s(C)) - (X2 - C)S'(X2) VC E R. (3.2.8)

(S(X2) - S(C))2 + (X2 - C)

Observe from (3.2.8) that as C approaches X2, I(X 2 , C) is singular for each

X2 in i in that

1
I,(as as X2 VX2 EiR.

X2 C

Hence, the integral involving I. in (3.2.6) must, as indicated, be taken in the sense

of the Cauchy principal value. One also finds that, as X2 approaches C, Io(X 2, C)

is singular for each C in i in a manner entirely analogous to that displayed

above. On the other hand, an examination of (3.2.6) reveals that the behavior of

Ko(X2, ) as either C approaches a fixed X2 in i or as X2 approaches a fixed in
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R is regular; in fact, since s is an element of A, the limits

lim K,(x 2 ,) = s (x2) VX2 E ,
S-X2 2(1 + S'(X 2 )2 )

and
lim K,(x2 , s ) V E B?,

X2- 2(1 + s'( )2)

both exist and are finite.

Recall, now, that the function € which appears in the second term on the right

hand side of (3.2.6) is unknown. The jump condition (3.1.17)2 serves, therefore, as

a devi,' by which this function can be determined. An appropriate substitution of

(3.2.6) into (3.1.17)2 yields-after collecting terms and dropping a non-vanishing

common factor-the following equation:

+00

(/J +P2) + PI P2 /K.(- 0)( ) -/1 + s'(C) 2 d

-00

+00_ P1 - P2 f
Al- j 12 +j7 2  I(.,C)s'( )d on JR. (3.2.9)

-00

Observe that (3.2.9) constitutes, for each fixed s contained in A, a linear integral

equation to be solved for 4 on JR. The integral equation in (3.2.9) can be simplified

by making a few modest substitutions; toward this end define V : I? -- JR by

V(X2) = O(x 2)V/ + (x2)2 VX2 E R?, (3.2.10)

and introduce a real constant A through the relation

A PI - P2
7r(pI + P2) (3.2.11)

Recall from the definition of r. that the moduli pi and P2 satisfy 0 < P2 < PI; A

must, consequently, lie strictly between 0 and 1/7r. Continuing with the simplifi-

cation of (3.2.9), multiply and then divide both sides of the integral equation by
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N/1 + (s') 2 and (PI + P2), respectively, to obtain, with the aid of the definitions

(3.2.10) and (3.2.11) the following alternative to (3.2.9):

+00 +00

S+ A JK,(.,)( d = A J I(., )s'( ) d on JR. (3.2.12)
-00 -00

For the purpose of facilitating the forthcoming discussion introduce, for each

function s contained in A, an operator M, such that, for each function 0 the

function M,, is given by

+00

.0 JK,(., )k( ) on JR. (3.2.13)

-00

In addition, let a function f, : JR --* JR be defined for each s in A via

+00

f = JI(.,()s'( )d on JR. (3.2.14)
-00

With the aid of (3.2.13) and (3.2.14), (3.2.12) can be recast to read

V + AMV = Af. on JR. (3.2.15)

Evidently a solution V to (3.2.15) provides, through (3.2.10), a solution to

(3.2.9). However, it is also clear from (3.2.1)-(3.2.3) and (3.2.10) that, given Vp,

v can be obtained directly in the form

+00

V(X1,X 2 ) 2s (x 1(G l,x2,})o(P) + G2(x1,x 2 , )s(C)) d

00

V(XI, X2 ) E JR2 \ C, (3.2.16)

which obviates the need to consider 4. Hence, for each s in A the task of

constructing a solution v to the corresponding reduced boundary value problem
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(3.1.17) is altered, via potential theory, to one of constructing a solution to the

corresponding integral equation (3.2.15). The task of the next section is to deter-

mine a set of conditions upon s-in addition to requiring that it to be an element

of A-which are sufficient to guarantee the existence of a solution to (3.2.15).

3.3. Analysis of the integral equation. Suppose that s is contained

in A and consider the kernel K, associated with it by (3.2.8). Observe that

the stipulated smoothness of s implies that Ks is a continuous function on R 2.

Moreover, since

IKs(x 2,)I < Is(x2) - s() - (X2 - )s'(x2) V(X2,) E JR2  (3.3.1)
(x2 -

V)2 )

the boundedness of s" on R and Taylor's theorem imply the following global

estimate for the modulus of K,:

IK.(X2, 1 - sup Is"(0) ) I (IL-(R) V(x2 , ) E 1F (3.3.2)]K'(2' ) < EI 2

Hence, the kernel K8 corresponding to any s in A is continuous and bounded on

JR; furthermore, the bound is given explicitly in terms of a functional of s-the

L' norm of s" over R. If the integral equation held over a compact domain

then the bound (3.3.2) would lead, for each fixed A in (0, 1/7r), to sufficient con-

ditions in terms of the size of Is"j!.(R) which would allow the construction of

a unique solution to the integral equation via a uniformly convergent Neumann

series. Since the integral equation in (3.2.15) holds over JR, it will be convenient

to determine conditions on functionals of s other than its L' norm which are suf-

ficient to guarantee an analogous result. Toward this end consider the Neumann

series for this integral equation. This series is readily obtained via the method of

successive substitutions and is given by 4 : JR --+ R as defined below:

00

i = A Z(-A)nMn, on J. (3.3.3)
n=O
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Observe that, with the aid of (3.2.13) and a formal interchange of summation and

integration, 4i satisfies

4i+AM,4 = Af on ?.

That is, provided the formal operations performed above can be justified, 4P fur-

nishes a solution to the integral equation. If the Neumann series converges uni-

formly then this is certainly the case. Consider the following geometric series:

00

g -A If1IL2( ) 1Z(A)" 11K. 1122u2) • (3.3.4)

If K, and f, are elements of L 2(I? 2 ) and L2 (R), respectively, and the L 2 norm

of K8 over R2 satisfies

A IIKsIIL2(2) < 1 (3.3.5)

then (3.3.4) will converge. Note that the Neumann series is majorized by the

geometric series. Conditions sufficient to guarantee the convergence of (3.3.4)

are, accordingly, sufficient to assure that the Neumann series converges uniformly

on its domain of definition and, therefore, as alluded to above, that 4 supplies a

solution to (3.2.15). Provided these sufficient conditions are in force, the operator

M,, is, moreover, a Fredholm integral operator with domain and range L2 (JR).

Hence, the Fredholm alternative holds and it can be shown that the solution 45 to

the integral equation provided by the Neumann series is unique. 4

At present the aforementioned sufficient conditions are only of value if there

exist functions s in the set A defined by (3.1.6)-(3.1.8) for which they hold. It

will now be demonstrated that the first two conditions are satisfied for every s

in A and that the third holds for every s contained in the proper subset I of A

defined by
+00

I"- {s , Al A v1 /( Is'(2)Ils"(X2)dx2 ) <1}. (3.3.6)
S00

4 See GARABEDIAN [14] for a discussion of Neumann series and the foregoing results.
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First suppose that s is an element of A. Show that the kernel K, must

consequentially be square integrable on its domain of definition. Let k, : R 2 -- R

be defined by

k.(x 2,r7) = s(x 2)- s(x 2 + 77) + /s'(x 2) V(x 2 ,r7) E 1R.  (3.3.7)

Note, from (3.3.1), (3.3.7) that

+00+00 +00+00 -

(/ f f.2, d d ,<- f- (X2 _ 4- ' d)2

-00-00 00-00

+00 +00

ff J Jk(X 2,7) d7 dX2. (3.3.8)
-00 -00

Hence, to demonstrate that K, is contained in L 2(1tR2 ) it suffices to show that k.

as defined in (3.3.7) is square integrable on )R! Now, with a formal change in the

order of integration and the use of Parseval's identity the far right-hand-side of

(3.3.8) can be recast as

+00+00 +00+00J Jk(X2 77)d 7dX2=J f fk(X 2 ,77)dX2 d.7
-00-00 -00-00

+00+00

= r J J.IFfks,}(w' 77)12 dw d77. (3.3.9)
- 00-00

The function .F'{k.}(., 77) : R --+ ( which appears in (3.3.9) represents, for each 77

in R, the Fourier transform of k,(., 7). This is supplied by

+00

k},I(w,77) = Jk(X2, 77 )e- W2 dX2
-00

1+ iw - eE R3 .
772 V(w,7r) E 1R, (3.3.10)
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where B? :1 --+ C, in turn, is the Fourier transform of s:

+00

9(w) = Js(x 2 )e - i
Vz2 dx 2 Vw E R. (3.3.11)

-00

A formal change in the order of integration on the far right-hand-side of (3.3.9)

yields
+00+00 +00+00] .Jk(X 2, 77) dq dX2 1 1.7 J. J F }(W, 7)12 d7 w12[2

-00-00 -00

so that, with the aid of (3.3.10) and (3.3.11),

+00+00 +00 +00

2r tk4  d7) dw

-00-00 -00 -00

+00 +00,L,3IS( d)12d 11 +1 - - ei' 2

-; J 27r J d(. (3.3.12)

-00 -00

Next, a straightforward application of contour integration yields the identity

+00"' -,J[11 + 4i - ei(¢1 2 d( =-,

27r (4
-00

so that (3.3.12) implies that

+00+00 +00

J Jks(x 2 ,vl)dqldx 2 =- J ,wI3 I.(w)12 dw. (3.3.13)

00*-00-0

Note that, provided the integral on the right-hand-side of (3.3.13) exists, the

two formal changes in the order of integration performed above are justified by

Fubini's theorem. 5 Now, by (3.3.12), elementary identities involving the Fourier

5 See HALMOS [17] for a statement and proof of Fubini's theorem.
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transform of first and second derivatives, and Parseval's identity, (3.3.13) gives

+00 +00

J- 3f Is'(x 2 )l s"(x 2 )dx 2. (3.3.14)

-00-00 -00

Hence, provided s is an element of A it is apparent from (3.3.8), (3.3.14) and the

Cauchy-Schwarz inequality that the kernel K, is square integrable on in 2 and,

moreover, that IIKIIL2(E2) can be estimated as follows:

+001K. 122(U 2 r ' / ,,IT
l  . 33.5

3II(R) <  Js'(x 2)ls"(x 2) dx2 < 1 Is IIL2(R) IIS"IL2(,R) (3.3.15)
-00

Observe that while the membership of s in A is certainly sufficient to ensure

that K, is an element of L2 (f? 2) it is not necessary. An application of H6lder's

inequality to (3.3.14) shows, for instance, that in order for K, to be square inte-

grable on R 2 it is sufficient to require that s' and s" be elements of L"(in) and

Lq(JR), respectively, for some p in [1, oo) and conjugate exponent q = p/(p - 1).

The choice p = q = 2 clearly leads to the ultimate estimate in (3.3.14). It is,

moreover, clear that, provided s is in A, the domain and range of the operator

M. introduced in (3.2.13) can both be taken as L2 (i). An immediate conse-

quence of this observation is that iZ t'y :b in L 2 (ii) miien so also is M'V, for any

natural number n.

Next, given that K, is an element of L2(Ri2 ) for every function s in A,

consider the issue of proving that the forcing f, is similarly square integrable on

its domain of definition. Observe, first, that the singular behavior of I. which

appears in the definition (3.2.15) suggests that f. can be linearly decomposed

into a regular part and a Cauchy principal value part as follows:

4-00 1 +0

f(X2)= J(I.(X2, 2 + J 2-+

-00 -00

+00 +00

f sS X2) - f _ _ _ -
- K(X 2 , s s'( -d + - V 2 E JR. (3.3.16)
-00 X2-00 X
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It is now convenient to define functions g, : R -- R and h, :JR -/R by

+00

g-(X 2 ) -. K,(x 2,)s(x2) - S'( )d Vx 2 E if?, (3.3.17)

-00

and
+00

hs(x 2 ) = dX 2 E ,(3.3.18)

-00

respectively. Consider the term of the decomposition involving the function g,.

From the assumed smoothness of s, the difference quotient which appears in the

integrand on the right hand side of (3.3.17) satisfies

S( 2) - S(-) IS'IlL-(m) V(X2, 0 E R2,
X2 -

and, hence, it follows from the Cauchy-Schwarz inequality that

+00 +00+00
19.(X) ,2 f( fK,(X2, )s,( )d,) dX2

-00 -00-00

+OU-roo +00

< Is 1L R) J JI(x 2, )do)( js'( )1 d )dx 2

t12 12 11 S 12
-"0-00-0

< 1 ILo-(,R) IK.( ) IISIL2(R). (3.3.19)

Therefore, since s' is contained in L 2(JR)nL0(f), (3.3.19) and the bound (3.3.15)

on IKOIL2(R2) guarantee that g, is square integrable on B? and, furthermore,

deliver the estimate

Wg81L2(jR) :5i- IIs L, (JR) 1S L2(R) IslL,(ff). (3.3.20)

Next, observe from (3.3.18) ,lat h, is a scalar multiple of the Hilbert transform

of s' and recall that the Hilbert transform maps the space Lq(JR) into itself for
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q in (1, oo).6 Consequently, the square integrability of s' on B? shows that h, is

also an element of L 2 (JR). Since the space of square integrable functions on if?

in linear it is clear that f3, as the sum of two functions contained in L2 (lR), is

itself an element of L2 (ff?). Hence, under the assumption that s is a member of

the set A the forcing f. must necessarily be square integrable on R. Note that-

based on the last statement and earlier remarks pertaining to the domain and

range of the integral operator M-the function M'f 8 is contained in L 2(if?) for

every non-negative integer n. Hence, if the Neumann series (3.3.3) is uniformly

convergent then p must also be square integrable on JR.

Up to this point it has been shown, as proposed above, that K, and f, are

square integrable on their domains of definition for every s contained in A D 2.

Finally, it is readily apparent from the primary estimate of IIlL 2) given in

(3.3.15) that if s is an element of the set 2 introduced in (3.3.6) then inequal-

ity (3.3.5) must hold. Hence, (3.3.5) is satisfied for every element s of 2". To

recapitulate, observe that if s is in 2 then there exists a unique solution to the

corresponding integral equation (3.2.14) given by the appropriate Neumann series

(3.3.3).

There may exist solutions to (3.2.15) which are not obtainable via the Neu-

mann series construction. Since, however, the solution to the integral equation

obtained via this construction is unique for each s in I it is apparent from the

above discussion that, should there exist any solutions to (3.2.15) which can be

aquired by alternate means, these must correspond to curves C. described by

functions s which do not belong to 2 (and may not even belong to A). It is

interesting to speculate on whether some of these solutions might correspond to

states wherein the phase boundaries manifest large slopes and/or curvatures akin

to those exhibited by the fingers found in studies of porous media, solidification,

and crystal growth.

Prior to concluding this section a few comments regarding the uniqueness of

6 This fact is established in RIESZ [22].
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the solution to the reduced boundary value problem are in order. Let s be an

element of 1. Then, by the foregoing results, the related reduced boundary value

problem has a solution given by the appropriate Neumann series (3.3.3). It is

known that the solution to the integral equation which issues from the reduced

boundary value problem is unique. The uniqueness of the solution to the reduced

boundary value problem is, however, still in question. It will now be shown

that the solution of the reduced boundary value problem is unique--just as with

the globally elliptic pairwise homogeneous equilibrium states-up to an arbitrary

additive constant. To see this suppose that v, : R 2 \C' --+ 1? and v 2 : ff 2 \C' -. JR

are both solutions to the reduced boundary value problem corresponding to s in

11; define w : JR2 \ C, --+ R by their difference (vi - v2 ) on JR2 \ C,. Then, from

(3.1.17), w clearly satisfies the following boundary value problem:

= on JR2 \CS,
eOw OwPl, =,.+ .) 2' (S=-, on R

O n O n o(3 .3 .2 1 )

W= W(S(.)-,.) on R,

w,,(xi,.)ec=o(1) as x,---+±oo on JR.

From (3.2.16) it is readily apparent that a solution to (3.3.21) is provided, modulo

an arbitrary additive constant, by

+00

w(xI,x 2 ) = YI-7,- JG (x, X2,C)O(C)dC V(x1,x 2 ) E R2. (3.3.22)27r I
-00

where G' : (JR2 \ C.) x R --+ JR is given by (3.2.3)1, and R : - JRf satisfies

0 + AM,0i = 0 on R. (3.3.23)

It is clear, based on the assumption that s is in 1", that A cannot be an eigenvalue

of the operator M.. Hence, (3.3.23) has only the zero solution. Now, since
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the representation (3.3.22) for w is modulo an arbitrary additive constant, the

functions v, and v2 can differ at most, as stated above, by a constant.

During the course of this section it has been shown that, for each function s

contained in I there exists, up to an arbitrary additive constant, a unique solution

to the reduced boundary value problem (3.1.17). This solution corresponds to

a deformation involving a non-planar interface Q.. Inasmuch as the reduced

phase segregation requirement (3.1.18) has not yet been applied it is still unclear

whether any of the aforementioned solutions give rise to globally elliptic two-phase

equilibrium states. The next section will, therefore, focus on characterizing a

subset of I for which there exist solutions to the reduced boundary value problem

augmented by the (reduced) constraints of phase segregation. If a function s

belongs to this subset of 1 the interface Q, will qualify as a phase boundary.

3.4. Implementation and satisfaction of the reduced phase seg-

regation requirement. Let s be an element of ." and suppose that V and

(up to an additive constant) v are the corresponding solutions to the integral

equation (3.2.15) and the reduced boundary value problem (3.1.17). If v is to

provide-through (3.1.16)-a solution u to the constrained boundary value prob-

lem its gradient must comply with the reduced strain constraints (3.1.18). Let

tC :R 2 \ C. --+ F+ denote the reduced shear strain field given by

K = V,, v,, on JR2 \ C'. (3.4.1)

Certainly Iv,iI must be less than or equal to r. on JR2 \ C,; hence, if the

reduced shear strain field complies with

tc < min{y - -r, -t - on \C., (3.4.2)
*

then both of the inequalities which comprise the reduced phase segregation re-

quirement (3.1.18) will be satisfied. Notice that the foregoing condition is suffi-

cient but not necessary to ensure the segregation of phases. It may, consequently,
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lead to overly conservative restrictions. Despite the strong restrictions which may

be imposed by enforcing (3.4.2) in lieu of (3.1.18), it will be demonstrated that

there exists a non-empty subset of 1" each element of which gives rise to a soluble

reduced constrained boundary value problem with a reduced shear strain field K

that allows their satisfaction.

The following simple calculation shows that K is subharmonic on JR 2 \ C':

K a = (v, v,6 ),- = 2(v,o. v,O ),

= 2(v,,6 v,,# +v,,, v,,)

= 2v,,v,,6>0 on R2 \C.

The subharmonicity of K on R 2 \ C, implies, given the decay properties of the

gradient of v embodied by (3.1.17)4, that its maximum values on t' and 2,

must occur in the limits approaching the curve C, from the high and low strain

sides, respectively. Hence, in determining whether the reduced shear strain field

. satisfies (3.4.2) it is sufficient to analyze its limiting behavior on either side of

the curve C,. A convenient approach to this is afforded by examining the limits

of the normal and tangential derivatives of v on either side of C,. From (3.2.6),

(3.2.11) and (3.2.12) it is evident that the limiting values of the normal derivative

of the the reduced out-of-plane displacement field are given by

8v((X2)-' 2) = - 76s(X2) 2  VX2 E R (3.4.3)

on the high strain side of C., and

'V 7rX2(X2) Vx 2 E R (3.4.4)
n (sV2+,2 ; ql"- S(X2 )2

on the low strain side of C,.

Let 1 : JR -* N designate the unit tangent vector to Q, defincd by

l(x 2 ) = S'(x 2 )ei + e 2  Vx 2 E R. (3.4.5)V1+ s(X2) 2
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Then a calculation very similar to that used in obtaining (3.2.4) yields

+00
OV ((X2), X2)[ 2.vX1+C,(())

-00

+00

+ 71J +,x)2 d
'7 - 7r+27r IT S7X 2)2

-00

2 11 '(r .s'(x 2) VX 2 E R (3.4.6)

for the limits of the tangential derivative of v on either side of the curve C,. Here,

as in (3.2.4), 1,(X2, -) and K,(X2 , .) are given, for each x2 in IR, by (3.2.5).

Turn now to the estimation of (3.4.3), (3.4.4) and (3.4.6)±. Consider the

limits of the normal derivative first. The following pair of inequalities follow

immediately from (3.4.3) and (3.4.4):

(S(x2)-,X2) <5 71 J (x2)1 _ 71 IIIILoo(JR) VX2 E R,

(3.4.7)
-n(S(X2)+,X2) <r I(x 2)1 < '7r I'ILO(%R) VX2 E R.
n

Hence, in order to bound the limits of the normal derivative of the reduced dis-

placement field on either side of C. it is only necessary to estimate the L00 norm

of W over R. In Appendix A it is shown that if 0 : B? --+ JR is an element of the

set V defined in (3.1.7) then IVIL*(?) exists and can be bounded as follows:

I4 iLoo(R) -< 2(f) I~lL2(R) kL2(R)" (3.4.8)

Recall from Section 3.3 that if s is contained in I then W is square integrable

on BR. Therefore, if V' exists and is square integrable on R the inequality displayed

in (3.4.8) can be used-with ¢ replaced by p-to obtain an estimate for the L' 0

norm of W over R. Suppose, from now on, that s is three times continuously
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differentiable element of ." with a square integrable third derivative on B?. It

can be readily shown that this is sufficient to guarantee that v' exists and is an

element of L 2(IR). In Appendix B it is demonstrated that the L 2 norms of V and

over JR can be estimated, respectively, by

C1(1 + IIS'l lL2(R) lls"llL2(J)) IS'IIL 2 (R)Ih Ill(JR) <  I. I - (3.4.9)

1- AV/Z jjs IL2(R) IS L2(R)

and

t-I- C2 IIL2(R) + [1 L2(R) iS L2(R) 1 JL2(R)
, 2 /til Iffill

+ISIL2(,R) Is 21L2(R) I2IIL2()

" I " I" I II(IL(R)] . (3.4.10)
+ I~s 1L2(R) IIs IIL2(,R) lsIILl(JR) h lL( )- (..0

The constants cl and c2 which appear in (3.4.9) and (3.4.10) are positive real

numbers entirely independent of s. Note that the denominator in (3.4.9) is strictly

positive since s is an element of 2". With the aid of (3.4.9) the estimate (3.4.10)

for P'1 L,2(R) can be expressed completely in terms of Is'IIL2(R), S" IL2(R) and

Ils'"IL2(R). Hence, (3.4.9), (3.4.10), (3.4.8) and (3.4.7) give estimates for the

moduli of the limiting values of the normal component of the gradient of v on

either side of C, in terms of the L 2 norms of the first three derivatives of s over

JR.

To provide an estimate for r. it ramains to obtain bounds on the limiting

values of the tangential derivative of v. Toward this objective, introduce a function

A: JR--+ R+ by

+00 +0

A(X 2 ) K.(X 2 )s()d + I Is(x 2,')()dC + +rs'(x 2 ) VX 2 E R. (3.4.11)
-00 -00
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Then it is clear from (3.4.6) and (3.4.11) that

" ) 2(S(A2)[ 2Xfr IAIILo(R) VX2 E R. (3.4.12)

Under the current assumption that s' exists and is square integrable on JR

it can be shown that both A and A' are elements of L 2(JR). Inequality (3.4.8)

can, therefore, be applied with 0 replaced by A; this leads, through (3.4.12), to

a bound on the limiting values of the tangential component of the gradient of

v on either side of C,. Given the bounds (3.4.9) and (3.4.10) for lPllL1(,R) and

ho'hL2(R) it is straightforward to derive estimates for the L 2 norms of A and A'

over JR in the form

IAIL2(R) < C3 [ IslL2(JR) + IIs'l22(R) IS" ll2 +- L() IL2(R) + IPIL2,R)

+ Is'lL2(,R) IS"IL2(JR) I(1L2(I?)], (3.4.13)

and

IjA'IIL2(R) < C4 [ I1s"IL2() + IIS'IL2(R) hIS IL2(f) h1SI2
_ II IL2(R)

+ Ihs' hL2(R) Is" I(R) -II"IL2(1R)

+ hIS 1L'2(IR) 1L2(R) s hIL(R h 1PL(R)

+ lIV1iL2L(R)]. (3.4.14)

respectively. Here c3 and c4 are positive real numbers which, like cl and c2, are

independent of s. Note that the L 2 norm of V over R appears in the estimates

for both IAIL2(R) and IIA'IL2(JR). Hence, with the aid of (3.4.9) these can be

rewritten solely in terms of the L 2 norms of s', s" and s.' over -R. As with

the normal component of the gradient of v, a bound on the limiting values of

the tangential component of the gradient of v on either side of C. is given, from
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(3.4.13), (3.4.14), (3.4.11), (3.4.12), (3.4.9) and (3.4.8) in terms of the L' norms

of the first three derivatives of s over R.

Fron, the prec.eding ,iiscussion it is clear that K can be made arbitrarily small

by reducing the size of Is'IL(JR), Is"IL2(IR) and IIS.'IL2(R). More specifically,

(3.4.9), (3.4.10), (3.4.13) and (3.4.14) can be substituted appropriately into (3.4.8)

to compute, using (3.4.7) and (3.4.12), an upper bound for K on U A in the

form

K < r 2 (Is 'IIL2(R), IS ( ILf,) I 1L2(jR)) =: r'. (3.4.15)

Define a set of functions 3' by

S{s E A I'T < min{-y,-y 7,-yj }} fX, (3.4.16)

where X is given by

X = {1- 1 - !R I C 3(iR), (n) E L2(R), n = 0,1,2, 3}. (3.4.17)

Then, from (3.4.2), (3.4.15) and (3.4.16), provided s is an element of the set 17

defined by

H =I 3, (3.4.18)

there exists a solution-unique up to an additive constant-to the associated con-

strained boundary value problem (3.1.17)-(3.1.18) with phase boundary Q,. This

solution defines a globally elliptic inhomogeneous two-phase equilibrium state and,

therefore, establishes the existence result sought after here. Note-from the defi-

nition of H-that the approach delineated above provides a means by which an

uncountably infinite number of such states can be constructed. It is significant

that the loading conditions related at the outset of Section 3.1 give rise to not

only a globally elliptic pairwise homogeneous equilibrium state but also an un-

countably infinite number of globally elliptic inhomogeneous two-phase equilibria.

This result clearly reflects the underlying non-linearity of the problem.
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As remarked earlier, there may exist globally elliptic inhomogeneous two-

phase equilibrium states which cannot be constructed via the approach taken

ac'c ~and, thus, do not correspond to phase bouncdaies in the set 17. Uider

relaxed smoothness assumptions on s there may, however, exist still other globally

elliptic inhomogeneous two-phase equilibrium states which can be constructed

via Neumann series. In particular, under such relaxed circumstances, it may

be possible to demonstrate the existence of states wherein the associated phase

boundaries exhibit geometrical irregularities such as corners or cusps (recall that

the existence of equilibria involving cusped phase boundaries has been established

by RoSAKIS [23] in his work involving a special anisotropic material).

3.5. An example. Given the results of Sections 3.3 and 3.4 it is illuminating

to consider a particular class of functions in the set A defined by (3.1.6) and

determine a subset of this class of functions which are also contained in the set

LI defined by (3.4.18). Toward this end, let s is given by

S(X2) =- 1 +_h V 2 E R , (3.5.1)

where h and f are both positive constants. A representative graph of s is displayed

in Figure 3. Note that s is clearly an infinitely differentiable element of the set A

for all values of the parameters h and E. Let the ratio of h to i be denoted by f.

The kernel K. associated with s must, as a consequence of the results of Section

3.3, be square integrable on if 2 . In fact, from (3.3.15) one finds, after a bit of

calculation, that the L2 norm of K over Rf2 can be bounded as follows:

IKSIL2(R2) :_ I1ksILI(1R2) = 'f. (3.5.2)

In the latter, k, is as defined in (3.3.7). Hence, it is clear from (3.2.10)

and (3.3.6) that if-for a given choice of the moduli pi and P2 which define the

elliptic phases of the three-phase material with shear stress response function
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Tp-the parameter c satisfies

f < 2/2 +2, (3.5.3)
/1 - /2

then the function s introduced above will be an element of i n C00 (R). Assume,

from now on, that a as defined in (3.5.1) is such that (3.5.3) holds. Then the

Neumann series (3.3.3) converges uniformly on in to a solution of the intergal

equation. With the aid of the decomposition (3.3.16) of the forcing f', the solution

of the integral equation can be expressed as

00 00

V(X) = A Z(_A),(Mnh,)(x 2) + 1 E(-A)"(Mng)(x2) Vx 2 E R, (3.5.4)
n=O n=O

where M, is as defined in (3.2.13). Given 7-p and, hence, the moduli p1 and P2, it

can be readily shown that, for every e which satisfies (3.5.3), the following order

relations hold for each non-negative integer n:

Mnh =( 2n + I

( 'h4)(X2 ) = O(e 2C ' VX2 E in,
(3.5.5)

(M g8 )(x 2 ) = o(&2E) VX2 E R,

Therefore, facilitated by (3.5.4) and (3.5.5), V can be represented in the form

+00

'P(X2) = 2Ah 2 (12 + - + O(C2 ) Vx 2 E i. (3.5.6)
1 (11- X2)

-00

An application of contour integration yields

+ 0 0 
rV 

2 E R
( 2 + ) 2 - 2) 2 e3 ( 1 + ( !)2) 2  ,

-00

so that (3.5.6) becomes, with the aid of (3.2.11),

1(X2 )= + (1 + - / + O(e 2) VX2 E R. (3.5.7)
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Observe that (3.5.7) and (3.5.1) can be used in (3.2.16) and (3.1.16) to con-

struct, for each appropriate pair (h,£), an approximate solution to the reduced

boundary value problem (3.1.17). Now, substitution of (3.5.1) and (3.5.7) into

(3.4.3) and (3.4.4) delivers the following formulae for the limiting values of the

normal derivative of v on either side of Co:

_fi _ _) 1(,~.) 2an (S(X2)-,x 2) = - +2 (f + () 2 )2 ) VX2 ER,
an PI P2 1(3.5.8)

v (), )-= _ P,)1 - ,) 1 - (+f)2 (3.5.8)
S(s(x 2)+, 2 ) = - +_(i+(._)_)+o(1)+(12)2.

Similarly, substitution of (3.5.1) and (3.5.7) into (3.4.6) gives rise to the following

expressions for the linitir- values of the tangential derivative of v on either side

of C.:

av 2plI (-yj - -t) L
(s(x 2 )-,x 2) = .I 2 (1 +E + 0(e2) Vx 2 E R,a/ P + P12 (1 +(L))

(3.5.9)
(s(x 2 )+,X 2 ) = - 2(+2(t)-) 0(f 2 ) w 2 E R.

P11 + /12 (1 +(L)) +

The expansions in (3.5.8) and (3.5.9) show the dependence on f of the limiting

values of the normal and tangential derivatives of v on either side of C,. They

readily imply that, for the function s indicated in (3.5.1), the associated reduced

shear strain field K introduced via (3.4.1) satisfies

K =0( 2 ) on JR\C.. (3.5.10)

An immediate consequence of (3.5.10) is that if f is made sufficiently small the

reduced phase segregation requirement (3.1.18) will then be satisfied and the

relevant function s will be contained in 1.

Note, alternatively, that the L2 norms, over 1, of the first three derivatives

of the function s defined in (3.5.1) can be computed directly to give

I['1 L2(,) = \' s' 18IIL2(R) 4 , , II..IIL2(R) = 8
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If the foregoing are substituted in the estimates (3.4.9), (3.4.10), (3.4.13), and

(3.4.14) then it is straightforward to show, with appropriate use of (3.4.7), that the

quantity 1', defined in (3.4.15) is of order e--which corroborates the asymptotic

results obtained above. Hence, if the parameters h and f which appear in the

definition of s are chosen so that e is sufficiently small, F, will satisfy

F. < min{- r,yY -}, (3.5.11)

and s will be an element of 17.

In either case a class of phase boundaries Q. for which e = h/£ is sufficiently

small emerges from the class of functions s given by (3.5.1). The reduced out-

of-plane displacement field corresponding to each such s, is by using (3.5.1) and

(3.5.4)-(3.5.7) in (3.2.16), given approximately by

+00
- rhX 2 [ d'U(XI, X2) (1+C)(!) 1

-00

+W0

4 1r hJfI,( ) C2d

27r 0(1 + C2)

V(xi, x 2) E R2 \ C'. (3.5.12)

An approximation to the corresponding primitive out-of-plane displacement field

u is then calculated easily by substituting (3.5.12) appropriately into (3.1.16).
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4. STUDY OF PHASE BOUNDARY KINETICS AND STABILITY

This chapter relies on the concept of a quasistatic motion introduced in Sec-

tion 2.3. Recall that, in addition to the shear stress response function rp, the

constitutive characterization of the material at hand includes a kinetic response

function V' which, in the setting of a quasistatic motion, dictates the dependence

of the normal velocity of a particle located at a point on a phase boundary on the

driving traction acting at that point. Given the distribution of driving traction on

a particular phase boundary it is therefore---through the kinetic relation-possible

to discuss the kinetics and stability of that phase boundary in slow motions. For

illustrative purposes this is done below in the context of the specific class of

phase boundaries studied in Section 3.5. A similar analysis could, in principle, be

performed for any function s in 1.

In Section 4.1 the driving traction f which acts on such a phase boundary is

derived. It is demonstrated that f is composed of the sum of an ambient term fo

which corresponds to the constant driving traction which would act on a planar

phase boundary corresponding to a suitable globally elliptic pairwise homogeneous

equilibrium state and higher order terms which represent the increment to the

driving traction resulting from the non-planarity of the surface Q8.

In Section 4.2 the ambient term fo and the most significant non-constant

term in the driving traction f are used in conjunction with V" and the kinetic

relation to address phase boundary kinetics and stability.

4.1. The driving traction acting on an arbitrary element of a spe-

cific class of phase boundaries. Let s be given by (3.5.1) with e = h/f chosen

so that (3.5.11) is fulfilled. As discussed in Section 3.5, Q. is then a phase bound-

ary. Consider the computation of the driving traction acting on Q9 . The simple

manner in which Q. can be parameterized implies that-in the present context

of antiplane shear-the expression for the driving traction provided in (2.4.6) can

be written as a function of one variable. Furthermore, it can be shown with-

out difficulty that, for the special three-phase material with shear stress response
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function rp, the driving traction f is given by

f = il - 12 oP1- P2(u,o,(s(.)+, .)u,a (s(.)-,.) - ) on JR. (4.1.1)
2

The definition of v supplied in (3.1.16) readily furnishes the following expres-

sions for u,G (s(-)+, .)eo on R:

u,'C (s(.)-, .)e. = -tie, + v,. (s(.)-, .)e.

= 7 e , + n (s( .)- , ")n + - (s(.)- , .) I on ,
LI (4.1.2)

u," (s(.)+, -)e. = 7re 1 + v,. (s(.)+, .)e.

= yrei + an(s(-)-+, .)n + -(s(.)+, .)I on R.

It is possible to show, from (3.5.1), (3.1.7) and (3.4.5), that the unit normal and

tangent vectors to Q, satisfy the following order relations:

n-el =-' O(e) on R, I-el =O(e) on JR. (4.1.3)

Hence, (3.1.16), (4.1.2) and (4.1.3) yield

Ov Ovs

uo (s(.)+, .)uQ (s(.)-,.) = 'lYr + ( 1 ( (.)+,-) + Yr (( ) -)

an On

+ O(e 2) on R. (4.1.4)

Now, if (3.5.8) is inserted appropriately in (4.1.4) and the result is substituted

into (4.1.1) the driving traction along the phase boundary Q, can be expanded

in powers of c as follows

f(X2) = Ao- V(kt)2)f + O(f 2) VX2 E. (4.1.5)

with the constants fo and v given by

fo P - P2(Tiyr - V (, = t7r. (4.1.6)
2 (PI + P2)
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fo is the ambient or base driving traction which would hold on a planar phase

boundary associated with a globally elliptic pairwise homogeneous equilibrium

state with displacement field (3.1.1). Observe that since

1 (1-1)2

-- t <1 Vx2 ER,
8 (1+(L)2)2 -

the coefficient of the 0(E) term in the expansion of f provides a bounded correction

to the base term fo. This term is, for small e, the most significant contribution

to f which results from the deviation in the geometry of Q. from planar. Note

that fo can takz on any real value whereas v must be positive. Furthermore,

because the difference (/1l - P2) is squared in (4.1.6)2, the positivity of v holds

even if the affiliations of the moduli /1 and /12 are reversed so as to be associated

with the high and low strain phases of the material at hand. From (4.1.5) it is

apparent that the 0(c) contribution to the distribution of driving traction on the

phase boundary Q. under consideration is a complicated function of position..

See Figure 4 for the graph of the function corresponding to the O(e) term in the

expansion of f. The results of ABEYARATNE [1], imply that the equilibria at hand

must, in general, constitute metastable states.

4.2. Kinetics and stability of an arbitrary element of a particular

class of phase boundaries. Given the expansion (4.1.5) consider the issue of

analyzing the kinetics and stability of an arbitrary element of the class of phase

boundaries at hand. Suppose that V is twice continuously differentiable on R.

Then, as noted in the remarks following (2.3.9), the admissibility of V requires

that V'(0) = 0 and V'(0) > 0. Assume, for the purposes of this discussion, that fo

is not a critical point of V; note that this requires, in particular, that if fo = 0 then

f/'(0) > 0. See Figure 5 for examples of graphs of monotone and non-monotone

kinetic response functions.

Let Q and Qf be those subsets of the phase boundary Q. defined as follows:

c Ix E Q, IX2 E (-f,t)}, ,Q = Q. \ Q..
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Observe, from (4.1.5), that Q' and Q1 correspond to the portions of Q, upon

which the 0(E) correction to fo is negative and positive, respectively. Note,

also, that Q' is the subset of Q, whose geometry deviates most significantly

from planar-that is, rougly speaking, the major portion of the bump which is

associated with the graph of the function s given by (3.5.1) corresponds to the

image of (-t, t) under s. See Figure 4.

From the assumed smoothness of V, (4.1.5) and Taylor's theorem the normal

velocity at a point on the phase boundary is given by

1 -- (11-2

V.(x) = V(f(x 2 )) = V(fO) - VI(fO) I + 0(f2) Vx E Qs. (4.2.1)
(1 + (LI)2)2

In determining the kinetic tendencies of Q. it is now convenient to consider two

cases. These are fo = 0 and fo : 0. Note that the base globally elliptic pairwise

homogeneous equilibrium state is mechanically stable only in the first of these

two cases.

Consider the case fo = 0. Then, since V (0) = 0, (4.2.1) imples that

V(x) = -V( ) ( Z)) + 0(E2) Vx E Q5. (4.2.2)

Since V1'(0) and v are positive, it is apparent from (4.2.2) and (4.1.3), that, to

most significant order in e, all points on Qc tend to move in the -el direction

while all points on Q1 tend to move in the el direction. That is, if fo = 0 then

the phase boundary displays a proclivity to become planar.

Now consider the case where fo 5 0. Suppose, first, that fo is positive. As

such the dominant contribution to the normal velocity is, at all points on Q., in

the el direction. Recall that fo is assumed not to be a critical point of V; hence,

since fu 5 0, f/'(fo) can be either positive or negative. If V'(0) > 0 then, since

v > 0, the normal velocity of points on Qc and Qf will decrease and increase,

respectively, on top of the ambient value V(fo). This, as in the case where

fo = 0, indicates a tendency for the phase boundary to straighten out. If, however,
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f '(fo) < 0 then, since v > 0, the exact opposite occurs-the normal velocity of

points on Q' and Q1 will add positive and negative increments, respectively, to the

ambient value V(fo). The protruding part of the phase boundary, if V'(fo) < 0,

portrays a tendency to grow while the flat part lags behind. The subcase where

fo is negative is yields a completely analogous result. That is, when fo < 0

the phase boundary shows a propensity to become planar or develop a larger

protrusion depending upon whether V'(fo) is positive or negative, respectively.

The foregoing discussion shows that the kinetics of a phase boundary Q,

in the class at hand are, to first order in e, stable or unstable depending upon

whether the kinetic response function is locally increasing or decreasing at the

ambient driving traction fo. If the constitutive description of a three-phase ma-

terial with shear stress response function 7p also includes a monotone increasing

kinetic response function such as that depicted in Figure 5a it is clear that phase

boundaries of the class under consideration will always be stable. If, on the other

hand, the constitutive description incrudes a non-monotone kinetic response func-

tion like that depicted in Figure 5b it is always possible to choose -Y1 and 7,r SO

that the phase boundary is unstable. These results suggest that it may be reason-

able to classify those three-phase materials with shear stress response function Tp

as kinetically stable and kinetically unstable depending on whether the kinetic re-

sponse function V is a monotone or non-monotone function of its argument. Such

a classification is consistent with that found by FRIED [13] in a linear stability

analysis of planar phase boundaries in arbitrary three-phase materials subjected

to a class of perturbations which encompasses the set of phase boundaries 1

determined in Chapter 3.

ACKNOWLEDGEMENTS

The author is grateful to Professor JAMES K. KNOWLES for his interest in and

support of this work and to MARK LUSK and MAURICE VAN PUTTEN for many

helpful conversations.



-53-

APPENDICES

Appendix A. In this appendix inequality (3.4.8) is established for all func-

tions 4 contained in the set V defined in (3.1.7). Let X : R -- JR be an element of

V with compact support about the origin; suppose, further, that X(O) = 1. Then,

if 4 is contained in V, one has the following inequality:7

II0IL-(11) <5 IX1V 11011V, (A. 1)

where

116 = II")1L2(IR) + II4'1L2(,R)

Hence, (A.1) shows that all elements 4 of V are bounded on R. The limit

, :(M)2=

lim 00(x2)e-2' t 0 (A.2)

must, consequentially, hold for every (without loss of generality) positive real

number t and every function 4 in V. Evidently, then, such a function 4k can be

expressed as follows:

z 2

lk(X2) -/ (O()e- 2 d VX2 E JR (A.3)

-00

Thus, from (A.3) and the Cauchy-Schwarz inequality it is clear that

+00 +00

I0(X2)1 < 1 2 o11¢4()Ie-, t d + J0 ' ( )Ie-2 I d
-00 -00

4 ' ( I 'Iln(R) + 7/I4'IIL,(,)) V(X2,t) E JR x R+. (A.4)

It is then obvious from (A.4) that

4 1

II4IL(R) < I'" (_2 I4 IIL,(R) + VrfII¢'IIL2(R)) W e R+. (A.5)

7 See AUBIN [9] for a demonstration of this fact.
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Now, minimize (A.5) with respect to t to obtain (3.4.8). Note that the constant
I 1

2(.1)4 in (3.4.8) may not be the sharpest possible one for an estimate of this type.

That is, there may exist a function 0 in V more optimal than the Gaussian used

in (A.3)-(A.5).

Appendix B. In this appendix the estimates (3.4.9) and (3.4.10) for

j1IPIIL2(R) and II'IIL2(R) are established. First consider (3.4.9). From the in-

tegral equation in (3.2.15), the Minkowski inequality and the Cauchy-Schwarz

inequality it is clear that

I(PIL2(IR) < A IIK.IIL2(12) IPiIL2(j?)+ A IlfsIIL2(R) • (B.1)

With the aid of the decomposition of f, provided in (3.3.17), the bound (3.3.21),

and the fact IIh IL2(R) = r IS'IiL2( R ) (B.1) implies that

IA(ir + I 'ILo(R) IgKIL2(,R2)) II S'IIL2(R)
IbPIIlL2(R) < 1 - A IKoIL2(R2) (B.2)

Now, use (3.4.8) and (3.4.9) in (B.2) to give (3.4.9).

Next consider (3.4.10). Recall that in order to obtain an estimate for the L 2

norm of p' over JR it is sufficient to require that s be an element of i n X, where

X is given by (3.4.17). Suppose that this is the case. Then it is permissible to

differentiate the integral equation in (3.2.15) to obtain

+00

V' + A Jk.(.,) ( )d = Af; on RI, (B.3)
-00

where

ko(X2, ) = 2K2(X2 , ) S ( X 2 ) -  + 2L.(x 2 , ) V(x 2 , ) E JR2  (B.4)
X2 -



-55-

and

S(X2) - S(G) - (X2 - )S'(X 2 ) + I(X2 - )2 SI()

(X2, (X)2= ( - C)((S(X2) - S(C))2 + (X2 - C)2)

V(x 2 ,C) E R2. (B.5)

Clearly, with the aid of the Cauchy-Schwarz and Minkowski inequalities, (B.3)

implies the following estimate for Io'IL2(JR):

IV'IL2(R) -< AIIIL2(R2) IIIIL2(IR) + A IIfIIL2(R) • (B.6)

So, given bounds for Ik, IL2(IZ2) and IIf'1IL2(mn) in terms of the L 2 norms, over 1,

of the first three derivatives of s, (B.6) will provide, in conjunction with (3.4.9), an

estimate for 1IIo'IL2(R). A bound for the L2 norm of L. over JR2 can be obtained

in exactly the same manner as that established for K8 in Section 3.3. This bound

is
< r  Is II

' 
, i 2 

''  (B.7)
IL.L2(R2) IL 2 (R) I IL2(t)

Now, from (B.4), (B.5), (B.7), (3.3.2) the Cauchy-Schwarz inequality and the

Minkowski inequality one obtains the following estimate for 1lk. IIL2(R2):

I/K.IL2(IR2) 2-< i I'LC H"IL-(€R) IS'1 2 2( ) 'Sis L-IRIISL" L- IL (R)
+ I" IIS" 11 2 ' (B.8)1

L2(R) " L2(R) (B.8)

It is also clear that

IIf'lIL2(R) -< r IS"IL2(R) + IS'IIL-(R) lK,,IIL2(R2) IS'IL2(R)

+ Is"IL-o() IK,IL2(12) IS'IL2(R)• (B.9)

Using (3.4.8), inequalities (B.8) and (B.9) become

I'CaIL2(R2) --< IS 2(lf) IS"IL2(,R) IS ...1
+ L, Is"I, I L() lL(.

3 s L2(JR) IS IL(R),I( .0
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and

IfL2(R+)2 + 2( )+ IILi(R) IL2(R) IIk.IIL2(R2)

+ () IIS'ILI(R) I-S"I,2(R) JII ,L2(R) IKaIL2(R2), (B.11)

respectively. Combining (B.6), (B.10), (B.11) and (3.3.15) leads, after a bit of

algebra, to the desired estimate (3.4.10).
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Figure 1: Graph of the shear stress response function r.
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Figure 3: Graph of j.
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Figure 4: Graph of the 0() correction to the driving traction.
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Vt'

Figure 5a: Graph of a monotone increa~sing admissible kinetic rebtonse function.

Vt'

Figure 5b: Graph of a non-monotone admissible kinetic response function.
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